UHE Paranoá

Plano de Segurança de Barragem Volume IV – Plano de Ação e Emergência Seção V - Síntese do Estudo de Inundação

Cliente

Produção

Revisão	Descrição	Empresa	Execução	Verificação	Aprovação	Data
Α	Emissão	INTERTECHNE	GDO	PYAS	HAP	14/05/2024
В	Atualização	INTERTECHNE	GDO	VYL	HAP	18/10/2024

IDENTIFICAÇÃO DO DOCUMENTO

O presente documento é parte integrante do Plano de Ação de Emergência da UHE Paranoá (Volume V do Plano de Segurança de Barragens), juntamente com os seguintes materiais:

Seção I	Informações Gerais do PAE e da Barragem	24BB-PN-0-GE-G00-00-G-00-RT-0410
Seção II	Detecção, Avaliação e Classificação das Situações de Emergência	24BB-PN-0-GE-G00-00-G-00-RT-0420
Seção III	Procedimentos de Notificação e Sistema de Alerta	24BB-PN-0-GE-G00-00-G-00-RT-0430
Seção IV	Responsabilidades Gerais no PAE	24BB-PN-0-GE-G00-00-G-00-RT-0440
Seção V	Síntese do Estudo de Inundação	24BB-PN-0-GE-G00-00-G-00-RT-0450
Seção VI	Implantação do PAE	24BB-PN-0-GE-G00-00-G-00-RT-0460

SUMÁRIO

1	INTRODUÇÃO	5
2		
3		
4		
	4.1 ANÁLISE DE POTENCIAIS MODOS DE RUPTURA (APMR)	
	4.2 CRITÉRIOS E CENÁRIOS	
	4.2.1 Cenários de Ruptura	8
	4.2.2 Detalhamento dos Cenários Simulados	
5	RESULTADOS DO ESTUDO DE INUNDAÇÃO E MAPA DE INUNDAÇÃO	11
6	ZONA DE AUTOSSALVAMENTO	17
7	REFERÊNCIAS	18

LISTA DE FIGURAS

Figura 3.1 – Vista geral do empreendimento da UHE Paranoá (Fonte: CEB, 2011)	6
Figura 4.1 – Hidrograma de ruptura – Ruptura mais provável (piping)	9
Figura 4.2 – Hidrograma de ruptura – Ruptura extrema	10
Figura 4.3 – Hidrograma operação extrema (TR 10.000 anos)	11
Figura 5.1 – Localização - Seção 1 a 21	13
Figura 5.2 – Localização – Seção 22 a 33	14
LISTA DE TABELAS	
Tabela 4-1 – Descrição dos cenários simulados	8
Tabela 4-2 – Descrição detalhada dos cenários simulados	11
Tabela 5-1 – Ruptura mais provável – Resumo dos resultados obtidos	15
Tabela 5-2 – Ruptura extrema – Resumo dos resultados obtidos	16
Tabela 5-3 – Operação extrema – Resumo dos resultados obtidos	17

1 INTRODUÇÃO

O presente documento tem por objetivo apresentar a Síntese do Estudo de Ruptura da Barragem da UHE Paranoá, situada em Brasília – Distrito Federal.

Neste documento, é apresentada a análise de potenciais modos de ruptura, os critérios e cenários utilizados, os resultados do estudo de inundação, os mapas de inundação e os critérios de definição da Zona de Autossalvamento. Essas informações foram extraídas do relatório do estudo de Ruptura da UHE Paranoá (24BB-PN-0-GE-G04-00-C-13-RT-0450), o qual foi realizado conforme orientações existentes no Manual do Empreendedor sobre Segurança de Barragens, elaborado pela Agência Nacional de Águas e Saneamento Básico (ANA).

2 DOCUMENTOS DE REFERÊNCIA

- 24BB-PN-0-GE-G04-00-C-13-RT-0450 Estudo de Ruptura
- 889-PCHPA-RT-RPS-HMO-0004 Revisão Hidrológica e Hidráulica e Reavaliação das Regras de Operação;
- 883-MOPH-CH-UHEPA-001- Manual de Operação Hidráulica Curvas Hidráulicas;
- 312-PCHPA-CD-PAE-001 Memória de Cálculo do Estudo de Ruptura Hipotética;
- UHEPA.RL.O&M.C.RA.24 Relatório de Inspeção de Segurança Regular de Barragem
 Janeiro 2024.

3 DESCRIÇÃO GERAL DA BARRAGEM

A UHE Paranoá está localizada no rio Paranoá, que compõe a sub-bacia 60 (Paranaíba) que, por sua vez, é parte da Bacia 6 (Bacia Hidrográfica do Rio Paraná) da hidrografia brasileira, segundo a divisão da Agência Nacional de Águas e Saneamento Básico (ANA).

O empreendimento está localizado em Brasília/DF, apresentando as seguintes coordenadas geográficas 15º47'14" S e 47º47'23" O. Na seção do barramento da UHE Paranoá, o rio Paranoá apresenta área de drenagem de aproximadamente 1034 km², a qual está totalmente inserida no Distrito Federal.

A UHE Paranoá é composta por um barramento de terra e enrocamento, e em sua margem esquerda apresenta uma estrutura de concreto convencional, onde estão localizadas as estruturas do vertedouro e da tomada de água.

A Figura 3.1 apresenta a localização das estruturas da UHE Paranoá.

Figura 3.1 – Vista geral do empreendimento da UHE Paranoá (Fonte: CEB, 2011)

4 ESTUDO E MAPA DE INUNDAÇÃO

A simulação da cheia induzida pela ruptura hipotética do reservatório da UHE Paranoá busca avaliar os impactos (em termos de vazões e níveis de água) provocados pela hipotética ruptura da barragem ao vale a jusante, podendo afetar a população, instalações, infraestruturas e ambiente.

Os critérios definidos para este estudo e apresentados na sequência seguiram principalmente as diretrizes do Manual do Empreendedor sobre Segurança de Barragens – Volume IV: Guia de Orientação e Formulários do Plano de Ação de Emergência – PAE da Agência Nacional de Águas e Saneamento Básico (ANA, 2016).

4.1 ANÁLISE DE POTENCIAIS MODOS DE RUPTURA (APMR)

A análise de potenciais modos de ruptura (APMR) de uma barragem é essencial para compreender os possíveis cenários de falha de uma barragem, visando mitigar os riscos associados e proteger as comunidades e meio ambiente. A partir das análises de APMR realizadas na barragem de Paranoá, foram estabelecidos três cenários para a delimitação das áreas de inundação e o mapeamento das regiões afetadas. Estes cenários englobam a ruptura mais provável (piping), a ruptura extrema (galgamento da barragem) e a operação hidráulica extrema, sendo uma análise mais aprofundada apresentada ao longo deste documento.

Entre os potenciais modos de falha analisados, considera-se que o mais plausível de ocorrência é o de ruptura mais provável. Tal conclusão é embasada no relatório UHEPA.RL.O&M.C.RA.24.REV07.01, que indica um significativo carreamento de solo nos drenos da galeria de desvio, localizados no vale próximo à base da encosta. A presença desse fenômeno de carreamento sugere uma condição desfavorável, aumentando a propensão a possíveis falhas na estrutura da barragem.

4.2 CRITÉRIOS E CENÁRIOS

O Manual do Empreendedor sobre Segurança de Barragens recomenda que se deve optar por construir o menor número possível de cenários. Assim, para garantir uma adequada segurança associada aos diferentes tipos de barragem, o referido manual define dois tipos de cenários: o cenário de operação hidráulica extrema, que pode dar origem a descargas importantes, que, sem conduzir a ruptura, pode colocar em risco pessoas e bens no vale a jusante, e o cenário de ruptura propriamente dita. Para o caso de ruptura, recomenda-se que sejam adotados ao menos dois cenários: um com ruptura por mecanismo estrutural com o nível de água em volume mais provável e outro de ruptura extrema, que considera a ocorrência de galgamentos.

As condições simuladas no presente estudo são apresentadas na Tabela 4-1.

Tabela 4-1 – Descrição dos cenários simulados

Cenário	Descrição do cenário	Vazão Afluente	NA instante da ruptura (m)	Volume reservatório instante da ruptura (hm³)	Brecha de ruptura
1	Ruptura mais provável	Sem afluência (dia de sol)	1000,65	503,8	Ruptura por piping (Froehlich 2008)
2	Ruptura Extrema	Hidrograma TR 10.000 anos	1001,66	628,8	Ruptura por Galgamento (Froehlich 2008)
3	Operação hidráulica extrema	Hidrograma TR 10.000 anos	-	-	-

4.2.1 Cenários de Ruptura

Para as simulações de ruptura de barragem foram considerados 3 cenários. O primeiro, com ruptura por mecanismo estrutural (piping), com o nível de água em volume mais provável, ou seja, com o nível de água do reservatório no nível máximo normal. O segundo, de ruptura extrema ou mais desfavorável, que considera a ocorrência de galgamento pela crista do barramento. E o terceiro, de operação hidráulica extrema, o qual sem conduzir à ruptura extrema pode dar origem a descargas importantes.

4.2.1.1 Cenário de Ruptura Mais Provável

Para o cenário de ruptura mais provável considerou-se a ruptura por mecanismo estrutural (piping), que pode ser considerado um cenário de ruptura em dia de sol, ou seja, sem influência da precipitação. Neste cenário, foi considerado a ruptura do reservatório da UHE Paranoá por mecanismo estrutural e adotando as seguintes condições de contorno:

- Vazão afluente no reservatório de 17,2 m³/s, correspondente à vazão de base do hidrograma;
- Operação de apenas uma comporta mantendo o nível normal (El. 1000,65 m);
- Nível do reservatório no instante da ruptura correspondente ao nível normal do reservatório (El. 1000,65 m);
- Como condição de contorno de montante do rio São Bartolomeu, adotou-se uma vazão constante de 10 m³/s;
- Considerou-se como condição de contorno a jusante o nível máximo normal no reservatório da PCH São Bartolomeu (El. 781,0 m);
- Características da brecha de ruptura conforme Froehlich (2008).

O hidrograma afluente gerado pela brecha é apresentado na Figura 4.1.

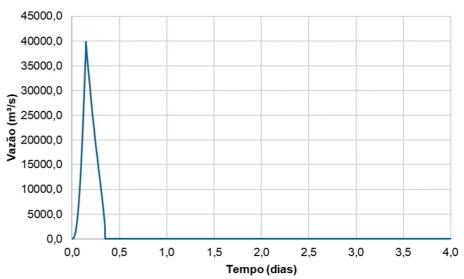


Figura 4.1 – Hidrograma de ruptura – Ruptura mais provável (piping)

4.2.1.2 Cenário de Ruptura Extrema

Para a ruptura extrema, em que a ocorrência de eventos hidrológicos extremos gera níveis de água e vertimentos importantes, considerou-se o cenário de galgamento da estrutura. Assim, as seguintes premissas foram adotadas:

- Vazão afluente ao reservatório correspondente ao hidrograma de TR 10.000 anos;
- Nível do reservatório no instante inicial da passagem da cheia correspondente ao nível normal do reservatório (El. 1000,65 m);
- Operação de apenas uma comporta;
- Como condição de contorno de montante, adotou-se uma vazão constante de 10 m³/s proveniente do rio São Bartolomeu;
- Considerou-se como condição de contorno a jusante o nível máximo normal no reservatório da PCH São Bartolomeu (El. 781,0 m);
- Características da brecha de ruptura conforme Froehlich (2008).

Dado que a abertura de apenas uma comporta permite a passagem da cheia de TR 10.000 anos, sem que o nível do reservatório atinja a crista da barragem, adotou-se como nível de galgamento o nível máximo atingido pelo reservatório durante o evento simulado, sendo esse de 1001,66 m.

O hidrograma efluente gerado pela brecha é apresentado na Figura 4.2.

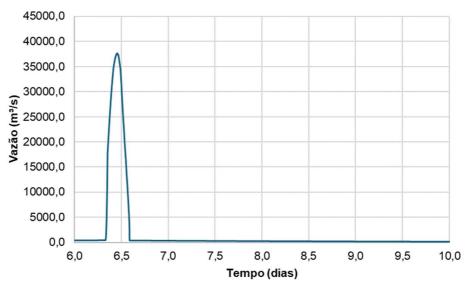


Figura 4.2 – Hidrograma de ruptura – Ruptura extrema

4.2.1.3 Cenário de Operação Hidráulica Extrema

Para o cenário de operação hidráulica extrema, dado que a UHE Paranoá apresenta vertedouro controlado por comportas, considerou-se que o cenário de operação extrema seria aquele em que ocorre a abertura de todas as comportas, adotando as seguintes condições de contorno:

- Vazão afluente ao reservatório correspondente ao hidrograma de TR 10.000 anos;
- Como condição de contorno de montante, adotou-se uma vazão constante de 10 m³/s proveniente do rio São Bartolomeu;
- Considerou-se como condição de contorno a jusante o nível máximo normal no reservatório da PCH São Bartolomeu (El. 781,0 m);
- Operação das comportas do vertedouro de maneira a manter o nível de água constante durante o evento. Logo, a vazão afluente é igual à vazão efluente do reservatório.

O hidrograma efluente gerado pela operação extrema é apresentado na Figura 4.3.

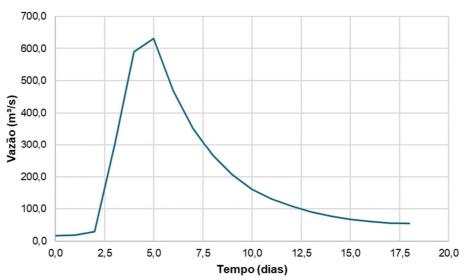


Figura 4.3 – Hidrograma operação extrema (TR 10.000 anos)

4.2.2 Detalhamento dos Cenários Simulados

Os cenários avaliados no presente estudo estão detalhados na Tabela 4-2.

Cenário	Descrição do cenário	Vazão Afluente	\overline{B} (m)	t_f (h)	NA inicial (m)	NA instante da ruptura (m)
1	Ruptura mais provável	Sem afluência (dia de sol)	164,7	3,51	1000,65	1000,65
2	Ruptura Extrema	Hidrograma TR 10.000 anos	229,0	3,93	1000,65	1001,66
3	Operação hidráulica extrema	Hidrograma TR 10.000 anos	-	-	-	-

Tabela 4-2 – Descrição detalhada dos cenários simulados

5 RESULTADOS DO ESTUDO DE INUNDAÇÃO E MAPA DE INUNDAÇÃO

Para a apresentação dos resultados do estudo de inundação foram elaborados mapas de inundação. Esses mapas são apresentados nos documentos listados a seguir.

- 24BB-PN-0-GE-G04-00-C-13-DE-0407
- 24BB-PN-0-GE-G04-00-C-13-DE-0408
- 24BB-PN-0-GE-G04-00-C-13-DE-0409

Complementarmente, foram delimitadas 33 seções transversais ao longo do modelo, nas quais foram detalhas as informações indicadas a seguir.

A velocidade máxima da onda de inundação (m/s);

- A vazão máxima atingida (m³/s);
- O nível máximo da cheia atingido (m);
- A altura máxima da onda de inundação (m);
- O hidrograma com a representação gráfica do comportamento hidrodinâmico (vazão e altura da água) da onda de inundação em função do tempo.

A Figura 5.1 e Figura 5.2 apresentam a distribuição geral das seções transversais ao longo do vale a jusante. Para obter uma visualização mais precisa da localização, recomenda-se consultar os mapas de inundação, indicados anteriormente.

As informações sobre os resultados da onda gerada pelos três cenários analisados estão indicadas na Tabela 5-1 a Tabela 5-3. As demais informações como os hidrogramas, cotagramas e níveis máximos de água, para cada seção de interesse, encontram-se nos anexos.

Intertechne

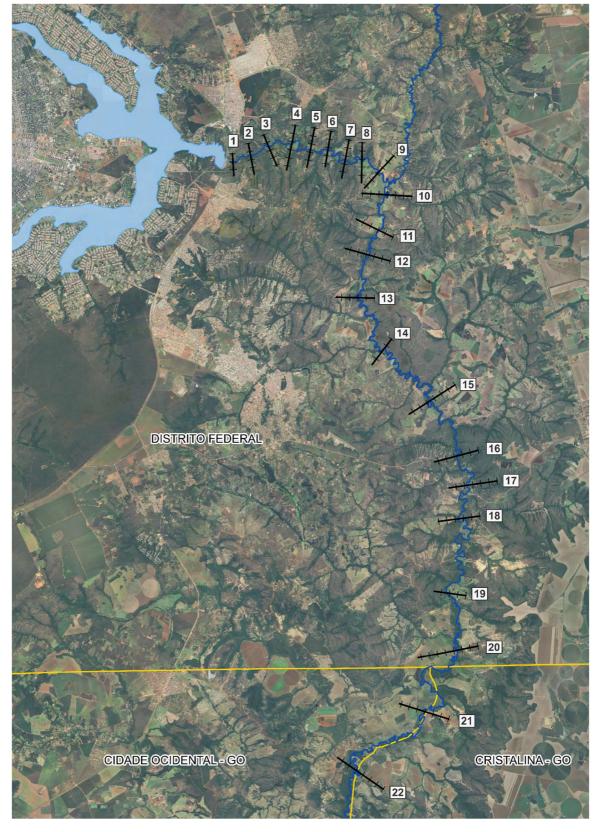


Figura 5.1 – Localização - Seção 1 a 21

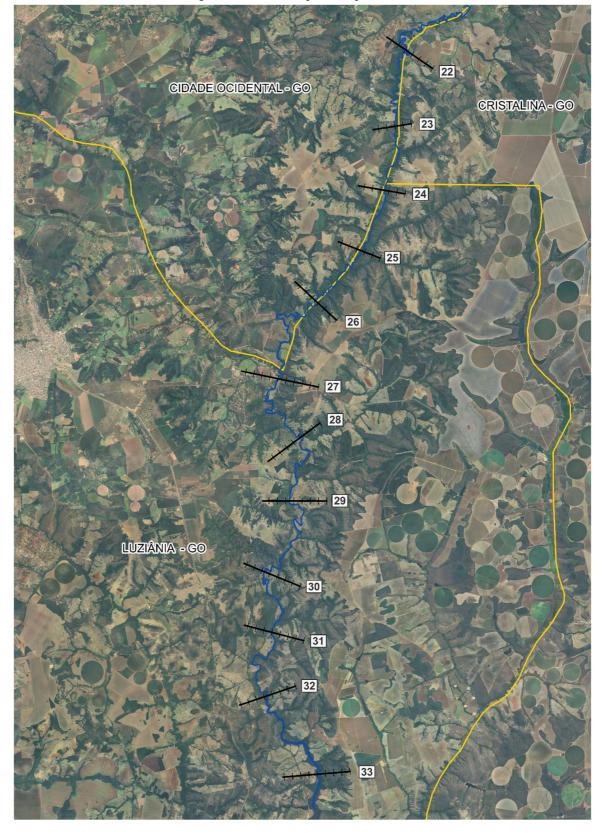


Figura 5.2 – Localização – Seção 22 a 33

Tabela 5-1 – Ruptura mais provável – Resumo dos resultados obtidos

Seção	Nível máximo (m)	Tempo de chegada da frente de onda	Tempo de chegada do pico da onda	Duração da onda (hh:mm)	Velocidade máxima (m³/s)	Vazão máxima (m³/s)
		(hh:mm)	(hh:mm)			
1	968,0	00:11	03:31	08:23	22,9	39728,4
2	912,7	00:20	03:32	08:30	18,0	39611,1
3	903,4	00:28	03:40	11:38	9,1	39258,3
4	901,2	00:35	03:46	10:46	7,1	38281,9
5	899,8	00:47	03:48	10:27	9,1	37673,2
6	896,3	00:58	03:54	13:09	11,1	37437,4
7	894,3	01:12	03:58	13:51	8,2	36985,1
8	892,6	01:20	04:03	14:26	6,8	36722,5
9	889,8	01:29	04:19	15:35	7,3	36398,7
10	888,0	01:39	04:32	16:14	5,1	33142,3
11	884,9	01:52	04:39	17:34	9,1	32816,7
12	881,6	02:02	04:48	17:39	6,7	32626,2
13	877,6	02:18	05:05	26:40	5,6	32224,5
14	873,8	02:45	05:27	20:45	6,0	31017,0
15	870,4	03:18	05:45	25:27	5,8	29503,2
16	865,3	03:43	05:54	20:23	11,7	29111,8
17	861,3	03:53	06:03	44:08	4,7	28983,5
18	858,0	04:04	06:07	23:47	6,3	28879,4
19	852,8	04:42	06:47	46:41	7,9	28111,1
20	851,1	04:59	06:57	69:13	6,0	27290,9
21	848,6	05:23	10:46	100:43	4,7	26521,0
22	848,5	06:15	10:49	157:09	2,4	14499,2
23	848,0	06:35	10:52	160:59	5,3	8932,2
24	845,3	06:57	10:59	160:48	4,7	8895,5
25	839,7	07:19	11:12	158:58	5,2	8872,8
26	831,4	07:43	11:56	144:14	4,6	8840,2
27	827,3	08:26	13:14	149:42	5,3	8264,4
28	824,4	09:06	13:47	157:44	2,9	8145,0
29	822,3	09:34	14:09	152:19	2,7	8000,2
30	819,5	10:20	14:24	152:16	3,8	7928,7
31	807,2	10:57	14:35	146:40	6,6	7920,5
32	795,6	11:29	14:58	150:50	6,8	7906,6
33	788,9	11:40	15:16	96:38	2,5	7881,3

Tabela 5-2 – Ruptura extrema – Resumo dos resultados obtidos

Seção	Nível	Tempo de chegada da	Tempo de chegada do	Duração da	Velocidade	Vazão máxima
Seçau	máximo (m)	frente de onda	pico da onda	onda (hh:mm)	máxima (m³/s)	(m³/s)
		(hh:mm)	(hh:mm)			(111-75)
1	967,7	00:10	03:05	163:35	22,5	37660,3
2	912,4	00:15	03:05	176:30	17,5	37650,7
3	903,4	00:20	03:05	193:10	8,6	37621,1
4	901,3	00:25	03:25	188:00	7,4	37515,9
5	899,9	00:30	03:25	203:25	8,8	37421,8
6	896,6	00:30	03:30	162:40	10,6	37380,5
7	894,7	00:40	03:30	194:00	7,9	37284,1
8	893,2	00:45	03:35	181:40	6,6	37219,7
9	890,6	00:50	03:45	201:50	7,0	37125,9
10	888,9	00:55	03:55	177:50	5,2	36252,5
11	885,8	01:05	04:00	195:20	9,1	36077,9
12	882,6	01:05	04:10	179:00	6,8	35961,0
13	878,7	01:15	04:20	194:15	5,6	35699,8
14	875,0	01:40	04:35	202:15	5,9	34980,0
15	871,6	02:00	04:50	207:05	5,8	34052,3
16	866,5	02:20	04:55	217:35	12,4	33746,8
17	862,3	02:20	05:05	198:15	4,8	33637,4
18	858,9	02:40	05:10	187:55	6,7	33550,8
19	848,1	03:10	06:20	253:25	5,8	9777,0
20	847,4	03:40	06:35	231:35	1,5	8756,0
21	841,0	04:30	10:55	216:50	2,5	8251,7
22	840,9	05:15	11:00	262:00	0,5	3709,2
23	840,4	05:50	11:05	262:10	3,1	2815,0
24	838,3	05:55	11:20	261:40	2,9	2805,9
25	833,7	06:00	11:30	258:20	3,6	2803,0
26	826,6	07:00	12:05	236:45	2,8	2798,5
27	822,3	08:25	13:45	253:50	3,8	2634,1
28	820,1	09:00	14:40	247:25	1,7	2573,8
29	817,4	09:05	15:35	248:15	1,5	2535,5
30	814,4	10:05	16:05	243:20	2,8	2517,6
31	802,9	11:00	16:20	239:15	4,4	2516,3
32	790,8	11:20	16:55	249:20	4,2	2514,9
33	786,2	12:25	17:20	180:10	1,1	2511,1

Tabela 5-3 – Operação extrema – Resumo dos resultados obtidos

Seção	Nível máximo (m)	Tempo de chegada do pico da onda (hh:mm)	Velocidade máxima (m³/s)	Vazão máxima (m³/s)			
1	954,5	143:44	5,6	631,0			
2	894,1	143:46	2,3	631,0			
3	885,6	143:51	2,0	630,9			
4	884,6	143:53	1,5	630,7			
5	883,2	144:02	2,6	630,5			
6	879,0	144:04	2,4	630,4			
7	876,0	144:15	1,9	630,3			
8	874,7	144:24	1,6	630,2			
9	871,4	144:35	1,5	630,1			
10	869,8	144:50	1,4	639,8			
11	866,9	145:08	1,6	639,5			
12	865,1	145:17	1,8	639,4			
13	861,3	145:45	1,4	639,3			
14	856,8	146:15	1,5	638,9			
15	852,2	147:19	1,4	638,2			
16	848,5	147:55	2,9	637,9			
17	846,3	148:22	1,1	637,7			
18	844,8	148:36	1,2	637,5			
19	839,2	150:47	1,8	636,9			
20	838,7	151:52	0,4	632,6			
21	834,5	161:13	1,0	627,0			
22	834,2	163:29	0,3	591,9			
23	833,7	163:47	1,5	586,8			
24	832,0	164:08	1,7	586,6			
25	828,2	164:34	2,0	586,6			
26	822,5	165:18	1,5	586,5			
27	818,3	167:20	2,6	586,0			
28	815,4	168:43	1,0	585,8			
29	813,1	170:01	1,1	585,4			
30	809,9	170:42	2,2	585,1			
31	799,2	171:13	2,4	585,1			
32	786,6	171:57	2,5	585,1			
33	784,3	172:47	0,4	585,0			

6 ZONA DE AUTOSSALVAMENTO

A Zona de Autossalvamento (ZAS) é a região imediatamente jusante da barragem, em que se considera não haver tempo suficiente para uma determinada adequada intervenção dos serviços e agentes de proteção civil em caso do rompimento do barramento. A dimensão da ZAS é definida pela maior das seguintes distâncias: 10 km ou a extensão que corresponde ao tempo de chegada da onda de inundação de 30 minutos.

A partir das análises desenvolvidas, pode-se concluir que a ZAS se estende até aproximadamente a seção 8 para a condição de ruptura extrema, referente a distância de 10 km a jusante do barramento da UHE Paranoá.

7 REFERÊNCIAS

- ANA AGÊNCIA NACIONAL DE ÁGUAS. Manual do Empreendedor sobre Segurança de Barragens, 2016.
- CHOW, V,T, Open Channel Hydraulics, McGraw-Hill, New York, 1959, 680 p.
- FROEHLICH, D, C, Embankment dam breach parameters and their uncertainties, Journal of Hydraulic Engineering, v, 134, n, 12 (5), p, 1708-1720, 2008.
- USACE U,S, ARMY COPS OF ENGINEERS, HEC-RAS River Analysis System -Hydraulic Reference, Hydrologic Engineering Center (HEC), Version 6,0, 2021.
- USACE U,S, ARMY COPS OF ENGINEERS, HEC-RAS River Analysis System User's Manual, Hydrologic Engineering Center (HEC), 2021.